
I/O and Lustre:
An Application Programmer’s

Perspective

Bilel Hadri and Lonnie Crosby
bhadri@utk.edu lcrosby1@utk.edu

NICS Scientific Computing Group

OLCF/NICS Spring Training

March 9th, 2011

Outline

 Introduction to I/O

 Path from Application to File System

 Common I/O Considerations

 I/O Best Practices

2

Outline

 Introduction to I/O

 Path from Application to File System

 Common I/O Considerations

 I/O Best Practices

3

Factors which affect I/O.

 I/O is simply data migration.
– Memory Disk

 I/O is a very expensive operation.
– Interactions with data in memory and on disk.

 How is I/O performed?
– I/O Pattern

 Number of processes and files.

 Characteristics of file access.

Where is I/O performed?
– Characteristics of the computational system.

– Characteristics of the file system.

4

I/O Performance

 There is no “One Size Fits All” solution to
the I/O problem.

Many I/O patterns work well for some range
of parameters.

 Bottlenecks in performance can occur in
many locations. (Application and/or File
system)

Going to extremes with an I/O pattern will
typically lead to problems.

5

Outline

 Introduction to I/O

 Path from Application to File System
– Data and Performance

– I/O Patterns

– Lustre File System

– I/O Performance Results

 Common I/O Considerations

 I/O Best Practices

 6

Data and Performance

7

 The best performance comes from situations when the
data is accessed contiguously in memory and on disk.

 Commonly, data access is contiguous in memory but
noncontiguous on disk. For example, to reconstruct a
global data structure via parallel I/O.

Memory Disk

Memory Disk

Data and Performance

8

 Sometimes, data access may be contiguous on disk but
noncontiguous in memory. For example, writing out the
interior of a domain without ghost cells.

 A large impact on I/O performance would be observed if
data access was noncontiguous both in memory and on
disk.

Memory Disk

Memory Disk

Serial I/O: Spokesperson

 Spokesperson

– One process performs I/O.

Data Aggregation or
Duplication

Limited by single I/O
process.

– Pattern does not scale.

Time increases linearly
with amount of data.

Time increases with
number of processes.

9

 Disk

Parallel I/O: File-per-Process

 File per process

– All processes perform I/O
to individual files.

Limited by file system.

– Pattern does not scale at
large process counts.

Number of files creates
bottleneck with metadata
operations.

Number of simultaneous
disk accesses creates
contention for file
system resources.

10

 Disk

Parallel I/O: Shared File

 Shared File

– Each process performs I/O
to a single file which is
shared.

– Performance

Data layout within the
shared file is very
important.

At large process counts
contention can build for
file system resources.

11

 Disk

Pattern Combinations

 Subset of processes which perform I/O.
– Aggregation of a group of processes data.

 Serializes I/O in group.

– I/O process may access independent files.
 Limits the number of files accessed.

– Group of processes perform parallel I/O to a shared file.
 Increases the number of shared files

 increase file system usage.

 Decreases number of processes which access a shared file

 decrease file system contention.

12

File I/O: Lustre File System

 Metadata Server (MDS) makes metadata stored in the
MDT(Metadata Target) available to Lustre clients.

 Each MDS manages the names and directories in the
Lustre filesystem and provides network request handling
for the MDT.

 Object Storage Server(OSS) provides file service, and
network request handling for one or more local OSTs.

 Object Storage Target (OST) stores file data (chunks of
files).

13 ©2009 Cray Inc.

Striping: Storing a single file across multiple OSTs

 A single file may be stripped across one or more OSTs (chunks of the file

will exist on more than one OST).

 Advantages :

- an increase in the bandwidth available when accessing the file

- an increase in the available disk space for storing the file.

 Disadvantage:

- increased overhead due to network operations and server contention

 Lustre file system allows users to specify the striping policy for each
file or directory of files using the lfs utility

14

File Striping: Physical and Logical Views

15 ©2009 Cray Inc.

Four application processes write a variable

amount of data sequentially within a shared file.

This shared file is striped over 4 OSTs with 1 MB

stripe sizes.

This write operation is not stripe aligned therefore

some processes write their data to stripes used by

other processes. Some stripes are accessed by

more than one process

 May cause contention !
OSTs are accessed by variable numbers of processes (3 OST0, 1 OST1, 2 OST2 and 2 OST3).

Single writer performance and Lustre

 32 MB per OST (32 MB – 5 GB) and 32 MB Transfer Size
– Unable to take advantage of file system parallelism

– Access to multiple disks adds overhead which hurts performance

 Lustre

0

20

40

60

80

100

120

1 2 4 16 32 64 128 160

W
ri

te
 (

M
B

/s
)

Stripe Count

Single Writer
Write Performance

1 MB Stripe

32 MB Stripe

16

 Using more OSTs does not increase write performance. (Parallelism in Lustre cannot be exploit)

Stripe size and I/O Operation size

 Lustre

0

20

40

60

80

100

120

140

1 2 4 8 16 32 64 128

W
ri

te
 (

M
B

/s
)

Stripe Size (MB)

Single Writer
Transfer vs. Stripe Size

32 MB Transfer

8 MB Transfer

1 MB Transfer

 Single OST, 256 MB File Size
– Performance can be limited by the process (transfer size) or file system

(stripe size). Either can become a limiting factor in write performance.

17

 The best performance is obtained in each case when the I/O operation and stripe sizes are similar.

 Larger I/O operations and matching Lustre stripe setting may improve performance (reduces the latency of I/O op.)

Single Shared Files and Lustre Stripes

 Lustre

18

32 MB

Proc. 1

Proc. 2

Proc. 3

Proc. 4

…

Proc. 32

Shared File Layout #1

32 MB

32 MB

32 MB

32 MB

Layout #1 keeps data from a process in a contiguous block

19

1 MB

Proc. 1

Proc. 2

Repetition #1 Proc. 3

Proc. 4

…

Proc. 32

Repetition #2 - #31 …

Proc. 1

Proc. 2

Repetition #32 Proc. 3

Proc. 4

…

Proc. 32

Shared File Layout #2

1 MB

1 MB

1 MB

1 MB

1 MB

1 MB

1 MB

1 MB

1 MB

Single Shared Files and Lustre Stripes

 Lustre

Layout #2 strides this data throughout the file

File Layout and Lustre Stripe Pattern

Lustre

20

0

200

400

600

800

1000

1200

1400

1600

1800

2000

32

W
ri

te
 (

M
B

/s
)

Stripe Count

Single Shared File (32 Processes)
1 GB file

1 MB Stripe (Layout #1)

32 MB Stripe (Layout #1)

1 MB Stripe (Layout #2)

 A 1 MB stripe size on Layout #1 results in the lowest performance due to OST contention. Each OST is

accessed by every process.

 The highest performance is seen from a 32 MB stripe size on Layout #1. Each OST is accessed by only

one process.

 A 1 MB stripe size gives better performance with Layout #2. Each OST is accessed by only one process.

However, the overall performance is lower due to the increased latency in the write (smaller I/O

operations).

Scalability: File Per Process
 128 MB per file and a 32 MB Transfer size

0

2000

4000

6000

8000

10000

12000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

W
ri

te
 (

M
B

/s
)

Processes or Files

File Per Process
Write Performance

1 MB Stripe

32 MB Stripe

21

 Performance increases as the number of processes/files increases until OST and metadata

contention hinder performance improvements.

 At large process counts (large number of files) metadata operations may hinder overall

performance due to OSS and OST contention.

Case Study: Parallel I/O

 A particular code both reads and writes a 377 GB file.
Runs on 6000 cores.
– Total I/O volume (reads and writes) is 850 GB.

– Utilizes parallel HDF5

 Default Stripe settings: count 4, size 1M, index -1.
– 1800 s run time (~ 30 minutes)

 Stripe settings: count -1, size 1M, index -1.
– 625 s run time (~ 10 minutes)

 Results
– 66% decrease in run time.

22

Lustre

Scalability

• Serial I/O

– Is not scalable. Limited by single process which performs I/O.

• File per Process

– Limited at large process/file counts by:

• Metadata Operations

• File System Contention

• Single Shared File

– Limited at large process counts by file system contention.

– File striping limitation of 160 OSTs in Lustre (on Kraken)

23

Outline

 Introduction to I/O

 Path from Application to File System

 Common I/O Considerations
– I/O libraries

– MPI I/O usage

– Buffered I/O

 I/O Best Practices

24

I/O Libraries (MPI-IO)

Many I/O libraries such as HDF5 and Parallel NetCDF
are built atop MPI-IO.

 Such libraries are abstractions from MPI-IO.

 Such implementations allow for higher information
propagation to MPI-IO (without user intervention).

25

MPI-IO Usage

• Included in the Cray MPT library.

• Environmental variable used to help MPI-IO optimize I/O
performance.

– setenv MPICH_MPIIO_HINTS

– man mpi for more information

• If given appropriate information (stripe count, size) can
choose aggregators in collective operations that are Lustre
stripe aligned. (collective buffering).

26

MPI-IO_HINTS

MPI-IO are generally implementation specific. Below are
options from the Cray XT5. (partial)
– striping_factor (Lustre stripe count)

– striping_unit (Lustre stripe size)

– cb_buffer_size (Size of Collective buffering buffer)

– cb_nodes (Number of aggregators for Collective buffering)

– ind_rd_buffer_size (Size of Read buffer for Data sieving)

– ind_wr_buffer_size (Size of Write buffer for Data sieving)

MPI-IO Hints can be given to improve performance by
supplying more information to the library. This information
can provide the link between application and file system.

27

Buffered I/O

 Advantages
– Aggregates smaller read/write

operations into larger operations.

– Examples: OS Kernel Buffer,
MPI-IO Collective Buffering

 Disadvantages
– Requires additional memory for

the buffer.

– Can tend to serialize I/O.

 Caution
– Frequent buffer flushes can

adversely affect performance.

28

Buffer

Case Study: Buffered I/O

 A post processing application writes a 1GB file.

 This occurs from one writer, but occurs in many small write operations.

– Takes 1080 s (~ 18 minutes) to complete.

 IO buffers were utilized to intercept these writes
with 4 64 MB buffers.

– Takes 4.5 s to complete. A 99.6% reduction in time.

File "ssef_cn_2008052600f000"

 Calls Seconds Megabytes Megabytes/sec Avg Size

Open 1 0.001119

Read 217 0.247026 0.105957 0.428931 512

Write 2083634 1.453222 1017.398927 700.098632 512

Close 1 0.220755

Total 2083853 1.922122 1017.504884 529.365466 512

Sys Read 6 0.655251 384.000000 586.035160 67108864

Sys Write 17 3.848807 1081.145508 280.904052 66686072

Buffers used 4 (256 MB)

Prefetches 6

Preflushes 15

29

Lustre

Outline

 Introduction to I/O

 Path from Application to File System

 Common I/O Considerations

 I/O Best Practices

30

I/O Best Practices

 Read small, shared files from a single task

– Instead of reading a small file from every task, it is advisable to read the entire file from one
task and broadcast the contents to all other tasks.

 Small files (< 1 MB to 1 GB) accessed by a single process
– Set to a stripe count of 1.

 Medium sized files (> 1 GB) accessed by a single process
– Set to utilize a stripe count of no more than 4.

 Large files (>> 1 GB)
– set to a stripe count that would allow the file to be written to the Lustre file system.

– The stripe count should be adjusted to a value larger than 4.

– Such files should never be accessed by a serial I/O or file-per-process I/O pattern.

31

I/O Best Practices (2)

 Limit the number of files within a single directory
– Incorporate additional directory structure

– Set the Lustre stripe count of such directories which contain many small files to 1.

 Place small files on single OSTs
– If only one process will read/write the file and the amount of data in the file is small (< 1 MB to

1 GB) , performance will be improved by limiting the file to a single OST on creation.

 This can be done as shown below by: # lfs setstripe PathName -s 1m -i -1 -c 1

 Place directories containing many small files on single OSTs
– If you are going to create many small files in a single directory, greater efficiency will be

achieved if you have the directory default to 1 OST on creation

# lfs setstripe DirPathName -s 1m -i -1 -c 1

32

I/O Best Practices (3)

 Avoid opening and closing files frequently
– Excessive overhead is created.

 Use ls -l only where absolutely necessary
– Consider that “ls -l” must communicate with every OST that is assigned to a file being listed

and this is done for every file listed; and so, is a very expensive operation. It also causes
excessive overhead for other users. "ls" or "lfs find" are more efficient solutions.

 Consider available I/O middleware libraries
– For large scale applications that are going to share large amounts of data, one way to improve

performance is to use a middleware libary; such as ADIOS, HDF5, or MPI-IO.

– On Kraken and Jaguar, I/O libraries are the third most used libraries at linking

33

Further Information
 NICS website

– http://www.nics.tennessee.edu/I-O-Best-Practices

 Lustre Operations Manual
– http://dlc.sun.com/pdf/821-0035-11/821-0035-11.pdf

 The NetCDF Tutorial
– http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-

tutorial.pdf

 Introduction to HDF5
– http:// ww.hdfgroup.org/HDF5/doc/H5.intro.html

34

http://www.nics.tennessee.edu/I-O-Best-Practices
http://www.nics.tennessee.edu/I-O-Best-Practices
http://www.nics.tennessee.edu/I-O-Best-Practices
http://www.nics.tennessee.edu/I-O-Best-Practices
http://www.nics.tennessee.edu/I-O-Best-Practices
http://www.nics.tennessee.edu/I-O-Best-Practices
http://www.nics.tennessee.edu/I-O-Best-Practices
http://www.nics.tennessee.edu/I-O-Best-Practices
http://dlc.sun.com/pdf/821-0035-11/821-0035-11.pdf
http://dlc.sun.com/pdf/821-0035-11/821-0035-11.pdf
http://dlc.sun.com/pdf/821-0035-11/821-0035-11.pdf
http://dlc.sun.com/pdf/821-0035-11/821-0035-11.pdf
http://dlc.sun.com/pdf/821-0035-11/821-0035-11.pdf
http://dlc.sun.com/pdf/821-0035-11/821-0035-11.pdf
http://dlc.sun.com/pdf/821-0035-11/821-0035-11.pdf
http://dlc.sun.com/pdf/821-0035-11/821-0035-11.pdf
http://dlc.sun.com/pdf/821-0035-11/821-0035-11.pdf
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-tutorial.pdf
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-tutorial.pdf
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-tutorial.pdf
http://www.hdfgroup.org/HDF5/doc/H5.intro.html

Further Information MPI-IO

– Rajeev Thakur, William Gropp, and Ewing Lusk, "A Case for Using
MPI's Derived Datatypes to Improve I/O Performance," in Proc. of
SC98: High Performance Networking and Computing, November
1998.
 http://www.mcs.anl.gov/~thakur/dtype

– Rajeev Thakur, William Gropp, and Ewing Lusk, "Data Sieving and
Collective I/O in ROMIO," in Proc. of the 7th Symposium on the
Frontiers of Massively Parallel Computation, February 1999, pp.
182-189.
 http://www.mcs.anl.gov/~thakur/papers/romio-coll.pdf

– Getting Started on MPI I/O, Cray Doc S–2490–40, December
2009.
 http://docs.cray.com/books/S-2490-40/S-2490-40.pdf

35

http://www.mcs.anl.gov/~thakur/dtype
http://www.mcs.anl.gov/~thakur/papers/romio-coll.pdf
http://www.mcs.anl.gov/~thakur/papers/romio-coll.pdf
http://www.mcs.anl.gov/~thakur/papers/romio-coll.pdf
http://docs.cray.com/books/S-2490-40/S-2490-40.pdf
http://docs.cray.com/books/S-2490-40/S-2490-40.pdf
http://docs.cray.com/books/S-2490-40/S-2490-40.pdf
http://docs.cray.com/books/S-2490-40/S-2490-40.pdf
http://docs.cray.com/books/S-2490-40/S-2490-40.pdf
http://docs.cray.com/books/S-2490-40/S-2490-40.pdf
http://docs.cray.com/books/S-2490-40/S-2490-40.pdf
http://docs.cray.com/books/S-2490-40/S-2490-40.pdf
http://docs.cray.com/books/S-2490-40/S-2490-40.pdf

Thank You !

36

